Education

3rd Year Engineering Physics, Bachelor of Applied Science

University Of British Columbia

Skills

Mechanical

Solidworks, AutoCAD, OnShape, 3D printing, Laser/Waterjet cutting, CNC, Composite manufacturing, GD&T, FEA

Technical Experience

Avalon Mechanical

Mechanical Engineering Intern

Converted architectural drawings using Autocad Lisps commands, devised scripts that streamlined the conversion

Altium, Soldering, Oscilloscope,

Systems, PCB Design

Microcontrollers, Multimeter, Control

Automated a comprehensive HVAC heat loss calculation model using Excel used by all employees

Electrical

- Developed AutoLISP scripts to automate AutoCAD drawing setup to company standard, reducing task time by up to 90%
- Designed HVAC and plumbing systems adhering to government code while communicating and satisfying client needs

UBC Aerodesign

Subteam Lead | Advanced Airfoils

- Leading a team of 9 students through the design and manufacture of all the lifting and control surfaces for our advanced class planes - 120" span heavy lift aircrafts competing in the annual SAE Aero Design Competition
- Recruited, trained, and managed new team members in wing design and manufacturing methods
- Documented and presented our designs on behalf of my subteam in technical reviews
- Earned 1st place in technical presentation in 2023 and 5th place overall in 2022

Projects

Kyogre & Spirit - UBC Aerodesign

- Designed the aircraft's main wing, ailerons, and all servo connections using SolidWorks with DFMA methods
- Manufactured utilizing 3D printers, waterjet cutters, laser cutters, CNC machines, and carbon fiber molds
- Streamlined manufacturing processes, improved assembly alignments and cut construction time and errors by over 70%
- Collected analytical data from Xflr5 and Solidworks Flow to build models in MATLAB, Python, and Excel to optimize and size wings and control surfaces, improving lift and drag by 20% compared to past years
- Conducted structural analysis with Excel, SolidWorks simulation, and physical testing

Autonomous Racing Robot

- Designed, modeled, and manufactured multiple iterations of the robot using Onshape and Solidworks
- Collaboratively designed the power distribution system with hardware signal processing and noise shielding
- Integrated sonars, infrared, and reflectivity sensors with DC and servo motors; debugged systems using oscilloscopes
- Contributed to developing the microcontroller firmware, PID control, and signal processing algorithms including frequency filtering using convolution and Fast Fourier transforms
- Robot autonomously detects collisions, follows tape and infrared beacons, drops obstacles, and slides down a zipline

Autonomous Pool Robot

- Driven by 3 stepper motors with omni-wheels controlled by a Python kinematics model for precise motion control
- Using OpenCV to retrieve positional data of the robot and balls to calculate optimal pathing, striking force, and angle
- Utilizing a high-voltage solenoid to actuate the striking arm with controllable speed
- Implemented Wi-Fi protocol for efficient transmission of computer vision output to the ESP32 microcontroller

Servo Speed Control Circuit

- Utilized ICs, sensors, and feedback loops to build a dynamic motor speed regulator
- Tested and troubleshot circuit elements using digital oscilloscopes, multimeters, and simulation software

Software

C, C++, Python, Java, MATLAB, AutoLISP, Git, ROS, OpenCV, Linux, MS Office

09/2021 – 05/2026 | Vancouver, Canada

01/2023 - 05/2023

09/2021 - present

09/2021 - present

06/2023 - 08/2023

08/2023 - present

09/2022 - 12/2022